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1 Institut de Ciència de Materials de Barcelona (ICMAB–CSIC), Campus de Bellaterra,
08193 Barcelona, Spain
2 Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

E-mail: ehe@icmab.es

Received 13 April 2006, in final form 26 June 2006
Published 11 August 2006
Online at stacks.iop.org/JPhysCM/18/8049

Abstract
In this paper we present calculations of the zero-pressure melting temperature of
a series of face-centred cubic (fcc) metals, including Ag, Rh, Cu, Ir, Au, Pt, Pd,
Ni, Al and Pd. Our calculations employed the many-body potential due to Cleri
and Rosato (1993 Phys. Rev. B 48 22) to model these systems; in the particular
case of Pb, we also employed the ‘glue’ model of Lim et al (1992 Surf. Sci. 270
1109). Melting temperatures were obtained by calculating the Gibbs free energy
of the solid and liquid phases, and finding the temperature at which they match.
A wealth of other data of interest, ranging from enthalpies of fusion to transport
properties, is also reported. Our findings indicate that the models considered
in this study account reasonably well for the melting temperature of fcc metals,
although there is a tendency to underestimate the experimental values. For the
cases of Al and Cu we have also calculated the melting line, up to a pressure of
20 GPa in the case of Al and 100 GPa in the case of Cu.

1. Introduction

The thermal properties of metals, and in particular their melting behaviour, are of great
interest in fields as widely varied as engineering, materials processing and geophysics. It
is therefore not surprising that there has been considerable effort devoted to characterizing
and understanding the thermodynamics of these systems, both experimentally and employing
theoretical methods. Experiments, particularly when extreme temperatures and/or pressures are
involved, are difficult and costly, but nevertheless over the years a significant amount of data
on the melting behaviour of many metals has been accumulated [1, 2]. Concerning theoretical
efforts, the calculation of melting data from simulations based on first-principles molecular
dynamics (FPMD) methods is becoming the norm, but due to their high computational
demands, these calculations are rather costly. While intrinsically less reliable than FP methods,
empirical potentials (EP) are still attractive for the study of the thermal behaviour of complex
systems, principally for two reasons: firstly, they are computationally much less expensive than
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FP techniques, while in some cases affording more than reasonable accuracy; secondly, EP
models have frequently been used as ‘reference’ systems for the calculation of free energies
from FP simulations. In such applications, the free-energy difference between the FP model
and the EP reference is calculated, and for maximum efficiency and accuracy it is important
that the reference system mimics as closely as possible the FP system. Since simulations of the
EP model are computationally cheap, its free energy can be evaluated at little cost in a wide
range of pressure and temperature conditions.

Another use frequently made of EP models in this context is to chose a given model, and
then fit its parameters so that it reproduces as closely as possible data (total energies, forces, etc)
obtained from FP simulations. Then the EP model thus constructed is used in large-scale phase
coexistence calculations which would be too demanding to perform directly by FPMD. This
strategy has been used, for example, by Laio et al [3], and by Belonoshko and coworkers [4, 5].

In this general context it is desirable to characterize the different EP models that have
been proposed in the literature in their ability to reproduce the thermodynamic behaviour of
the materials that they were designed to describe. This has been done, for example for Si
employing different models [6–10], for C [11], or for metals employing the modified embedded
atom model [12]. In this paper we report results obtained employing the model proposed by
Cleri and Rosato [13] to describe a number of fcc metals, including Ag, Rh, Cu, Ir, Au, Pt, Pd,
Ni, Al and Pb. For the sake of comparison, this last element has also been simulated with the
‘glue’ model potential proposed by Lim et al [14].

The paper is structured as follows. In section 2 we describe the models employed in this
study, and also the computational techniques used. In section 3 we discuss the results obtained
for a wide range of properties, such as melting temperatures, enthalpies of fusion, entropies,
etc, and finally in section 4 we present the conclusions that are derived from this work.

2. Computational details

2.1. Model

In this work we focus on those fcc metals for which Cleri and Rosato [13] provided a
parametrization. These include the metals Al and Pb, and the transition metals Ni, Cu, Rh,
Pd, Ag, Ir, Pt and Au. As mentioned above, in the particular case of Pb, we have also used the
model of Lim et al [14] for comparison. The model of Cleri and Rosato (CR) [13] is based on a
second-moment approximation to the tight-binding d-band of transition metals. Properties such
as the cohesive energy and structural properties of these systems have been shown to be directly
linked to the average value and total width of the d-band, while being relatively insensitive to
other features of the band [15, 16]. Hence the assumption that a model having the form of a
second-order moment approximation to the tight-binding density of states would work well for
transition metals. Although Al and Pb are not transition metals, the same type of model seems
to also work for these elements. Cleri and Rosato write the potential energy of the system as

U =
∑

i

(U R
i + U B

i ), (1)

where the sum is over all atoms in the system, U R
i is a pair-wise repulsive interaction having

the form

U R
i =

∑

j

Ae−p(ri j /r0−1), (2)

where r0 is the first-neighbour distance in the fcc lattice, and U B
i is given by

U B
i = −

√∑

j

η2e−2q(ri j /r0−1), (3)
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which mimics the form of the square root of the second moment of the local density of
states, and hence has a many-body character. The parameters A, η, p and q were fitted to
experimental values of the cohesive energy, lattice parameters and elastic constants of the
systems considered. Cleri and Rosato [13] have shown that this potential is capable of providing
enthalpies and volumes of formation of point defects of the parametrized systems in good
agreement with experimental results. Likewise, phonon band structures and densities of states
are also well reproduced, as are other properties, such as the specific heat, the thermal expansion
coefficient, the Grüneisen constant, etc.

The ‘glue’ model of Lim, Ong and Ercolessi (LOE) [14] is similar in spirit to that of Cleri
and Rosato in that it contains both a pair-wise term and a many-body binding term. It has the
form

U = 1
2

∑

j �=i

V (ri j) +
∑

i

F(ni ), (4)

where ni plays the role of a continuous neighbour counter, having the form ni = ∑
j ρ(ri j),

where ρ(r) is a monotonically decaying function of r . The LOE model was used by Lim et al
[14] to study the relative stability of fcc and icosahedral Pb clusters as a function of cluster size,
and later the melting of clusters. Both the CR and LOE potentials have been extensively used
in simulations of metallic systems in the literature.

2.2. Methodology

The determination of coexistence conditions between two phases (e.g. solid and liquid) of a
material from computer simulations can be approached in different ways. The most direct,
but least accurate, method consists of simulating, via molecular dynamics (MD) or MC, one
phase (e.g. the solid phase) along a set of different external conditions, namely different
temperatures, until the phase transition sought (in this case melting) is observed. This direct
approach has been applied to the study of melting of several metals [17, 13, 18], though it has
long been recognized that such a method can only provide an upper bound to the theoretical
equilibrium melting temperature, i.e. the melting temperature predicted by the model (which
is, in general, different from the experimental melting temperature). This occurs because
the kinetics of first-order phase transitions are subject to hysteresis effects, which in turn are
affected by a number of factors, such as the presence (or absence) of defects, surfaces, the
system size, etc. The influence of these factors is negligibly small in macroscopic samples,
but not so in computer simulations, where the size of the system is always small compared to
experimental bulk samples. Therefore the errors committed in the estimation of the coexistence
conditions using this direct approach can be severe. Furthermore, these errors are impossible
to dissociate from the intrinsic limitations of the model used to simulate the system. Recently,
Laio and Parrinello [19] and Martoňák et al [20] have proposed a scheme which, in principle,
avoids hysteresis effects, and which has been used to model solid–solid phase transitions
in silicon [20], and more recently has also been employed to study the perovskite to post-
perovskite phase transition in MgSiO3 [21].

An alternative approach, which we have actually employed in the majority of the
calculations reported here, consists of evaluating, for each phase α and β of the material,
the free energies Gα and Gβ as a function of the external conditions, temperature T , and/or
pressure P . Thus we can find the conditions where Gα(T, P) = Gβ(T, P), i.e. where the two
phases are in equilibrium with each other. More details of our computational procedure are
given below.

Finally, there is a third method, sometimes referred to as the two-phase method, in which
the two phases are simulated in direct coexistence, with an interface separating them. If this
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combined system is simulated in microcanonical (constant N , V and E) conditions, then, after
some readjustment of the relative numbers of atoms in each phase, the temperature will oscillate
around the coexistence value. Alternatively, the system can be monitored in isothermal–
isobaric (constant N , P , T ) conditions. Then, if the temperature is fixed at some value below
the melting temperature, the liquid will eventually solidify, leaving only the crystalline phase
behind. Conversely, if the external temperature is fixed above the melting temperature, the
solid phase will eventually melt. By repeating this process one can effectively bracket the
coexistence temperature with the required accuracy. This method has been employed regularly
for calculating melting temperatures of materials using empirical potentials, such as in the
case of Si [7, 8, 22]. More recently, it has even been used at the level of first-principles
simulations [23, 24], though its use in this context is extremely demanding of computational
resources, given the need of simulating many hundreds or even thousands of atoms. We have
used the two-phase technique in one particular case, discussed below, to compare with the
results of the free-energy-based approach.

The computational techniques used in this study are the same as those employed in our
earlier studies on silicon [9, 10], and a detailed description has been provided elsewhere [9],
therefore here we will just provide an outline of our computational strategy. In order to locate
the melting transition, we start by evaluating the free energy of the solid phase at some reference
temperature, Ts, and likewise for the liquid, at temperature Tl, where Ts and Tl are chosen so
that they bracket from below and above, respectively, the melting temperature sought. The
free energy is obtained for each phase by choosing an appropriate reference system for which
the free energy is known, and computing the free-energy difference between the reference and
the system of interest. In the case of the solid phase we have employed the Einstein solid
as reference, for which the free energy can be calculated analytically, while in the case of
the liquid phase we have used the Lennard-Jones fluid, for which the free energy has been
tabulated by Johnson et al [25]. The free-energy difference between the reference and the
system of interest is computed from an adiabatic switching MD calculation in NV T conditions,
following Watanabe and Reinhardt [26]. In an adiabatic switching calculation, the reference
system is slowly (quasi-adiabatically) converted into the system of interest (or vice versa)
during the course of a single, non-equilibrium simulation. In so doing, the work consumed
in the process is accumulated. In the adiabatic limit this work would be exactly equal to the
free-energy difference between the system of interest and the reference, but in simulations
this limit can only be approached, but not strictly attained. Therefore the accumulated work
contains a dissipative contribution, and hence the work is an upper bound to the free-energy
difference (or a lower bound if the transformation starts at the system of interest and ends at
the reference). Experience shows, however, that sufficiently well-converged values of the free-
energy difference can be obtained within typical simulation runs (a few picoseconds or tens of
picoseconds long).

We then employ the reversible scaling technique [27] in NPT conditions [28] to calculate
the free energy of both solid and liquid phases in the range of temperatures [Ts, Tl]. The
reversible scaling technique is very similar to adiabatic switching, but instead of calculating
the free-energy difference between two different systems (target and reference), it allows one
to calculate the free-energy difference between the target system at temperature T , and the
same system at a reference temperature, T0, at which the free energy is known (has been
previously calculated). This technique exploits the formal thermodynamic equivalence between
scaling the potential energy by a factor λ and scaling the temperature by a factor λ−1. If the
λ parameter scaling the potential energy is varied between [1, λf] during the course of the
simulation, then the free energy is obtained between temperatures T0 and T0/λf, where T0 is
the temperature at which the reversible scaling simulation is conducted. By performing this
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kind of simulation for both the solid and liquid phases, we can locate the temperature at which
Gs = G l, which is by definition the coexistence, or melting temperature, Tf. As a check to
this procedure, we subsequently evaluate the free energy of each phase at the estimated value
of Tf, employing the same procedure as for the reference temperatures Ts and Tl. Naturally,
these free energies should again be equal, but the adiabatic switching and reversible scaling
calculations are subject to small errors which will cause these free energies to be not exactly
the same. Their discrepancy should nevertheless be small, and allows us to quantify the error
bars in our estimated value of Tf. From these calculations, we also obtain as a by-product
the enthalpy of fusion, �Hf, and the equilibrium volume of the solid and liquid phases at
coexistence, quantities from which we can infer, through the Clausius–Clapeyron equation, the
value of dTf/dP , the pressure derivative of the melting line. In separate simulations, we also
obtain average structural and dynamical properties of each phase, such as radial distribution
functions, diffusion coefficients, etc.

In some specific cases, namely those for which the potentials used in this work provide
better agreement with the experimental value of dTf/dP , we have also calculated the melting
curve using the dynamical Clausius–Clapeyron integration technique [28]. The dynamical
Clausius–Clapeyron integration technique is an extension of the reversible scaling method,
which allows us to obtain the coexistence line between two phases starting from given
conditions of T and P where they are known to be in equilibrium. Starting at these conditions,
the two phases are simulated in parallel, but in separate simulation boxes (i.e. without an
interphase). Following the same procedure as in the reversible scaling technique, the two phases
are simulated at constant temperature T0, but the potential energy is scaled by λ in such a way
that effectively the temperature varies from T0 to T0/λf in a quasi-continous fashion. At each
λ value, the Clausius–Clapeyron equation is used to calculate the corresponding change in the
pressure variable.

In all our simulations we have used systems consisting of 500 atoms in periodic boundary
conditions. We have conducted tests to establish the sensitivity of the calculated melting
temperatures on the size of the system which indicate that these values converge very rapidly
with the number of atoms considered in the simulations. In fact, sizes of the order of 100
atoms are quite sufficient for the present purpose, but we have settled on the larger size because
the models employed are computationally undemanding, and in this way we minimize the
statistical uncertainty in other computed quantities, such as fusion enthalpies, molar volumes,
etc. The system is coupled either to a Nosé–Poincaré thermostat [29] or, in the case of adiabatic
switching and reversible scaling simulations, to the stochastic thermostat of Andersen [30].
Constant-pressure conditions, when needed, are imposed using the scheme of Souza and
Martins [31] as implemented by one of the present authors [32]. All our calculations have
been carried out using the Trocadero code [33].

3. Results and discussion

3.1. Melting and thermodynamic properties

Following the procedure outlined above, we have obtained the zero-pressure melting point for
Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Al and Pb modelled using the CR potential. For the latter
element, the calculation was repeated employing the LOE potential.

Figure 1 shows the calculated free energies of solid and liquid Pb as predicted by the CR
and LOE potentials, in the vicinity of the melting point. It can be seen that, according to the CR
model, the free energies match at 466 K, which is therefore the melting point of Pb predicted
by this potential. This falls somewhat below the experimental value of 600.1 K [34], an error of
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Figure 1. Free energy of the solid and liquid phases of Pb as a function of temperature, calculated
using (a) the CR [13] potential, and (b) the LOE [14] potential.

Table 1. Melting temperatures of fcc metals at zero pressure. The first column lists our calculated
values, which are compared to those calculated by other authors, listed in the second column, and
to experimental values in the third. Experimental values were taken from [34].

Tf (This work) Tf (Other calc.) T exp
f

(K) (K) (K)

Ag 1033 ± 15 907 ± 15a, 1330b 1234.93
Rh 2678 ± 71 1763 ± 29a 2237.15
Cu 1237 ± 7 1073 ± 17a, 1490b, 1176 ± 100c 1357.77
Ir 3292 ± 52 2124 ± 35a 2719.15
Au 927 ± 37 1159 ± 19a 1337.33
Al 870 ± 5 890 ± 20d, 912 ± 50e 933.47
PbCR 466 ± 5 625 ± 10a 600.61
PbLOE 563 ± 1 598f 600.61
Pt 1579 ± 78 1794 ± 29a 2041.55
Pd 1257 ± 92 1215 ± 20a 1828.05
Ni 1796 ± 2 1359 ± 22a, 1880b 1728.15

a From [18]. b From [13]. c From [35]. d From [36]. e From [37]. f From [14].

−22%. The LOE model seems to fare better, as it gives a melting temperature of 563 K, much
closer to the mark (an error of −6%). Lim and coworkers [14] estimated a melting temperature
of 598 K by extrapolating the melting temperatures of Pb clusters of different sizes to the
infinite size limit. Although this value is close to the experimental result, it is probably subject
to a large uncertainty, given that it was obtained from an extrapolation (the largest cluster size
considered by Lim et al was 2057 atoms, for which the melting temperature was found to be
close to 500 K). Nevertheless the agreement between both calculated values is good, and we
can conclude that, at least for the case of Pb, the LOE potential gives a better description at
temperatures close to the melting point than the CR model.

In table 1 we list our calculated values for the melting temperatures, comparing with results
from other calculations and with experimental values. In table 2 we list the enthalpies of fusion,
�Hf, entropies of fusion, �Sf, fractional volume change, �V/Vs, and slope of the melting
line at zero pressure, dTf/dP . Whenever possible, experimental data and other theoretical
predictions are given for comparison.

Except in the cases of Ni, Rh and Ir, for which we obtain melting temperatures that
fall above the experimental value, our calculated melting temperatures fall slightly below the
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Table 2. Thermodynamic properties of fcc metals at the melting point.

�Hf (eV/atom) �Sf (kB) �V/Vs (%) dTf/dP (K GPa−1)

Ag 0.101 (0.117a) 1.212 (1.164b) 6.1 (3.8e) 72.35 (64.7b)
Rh 0.352 (0.276a) 1.414 11.06 (12.0f) 82.27 (61.7f)
Cu 0.133 (0.134a) 1.108 (1.157b) 6.06 (4.2e) 45.18 (41.8b)
Ir 0.436 (0.426a) 1.560 10.70 79.30
Au 0.101 (0.132a) 1.350 (1.164b) 6.79 (5.1e) 70.60 (57.0b)
Al 0.084 (0.112a) 1.103 (1.38c) 4.15 (6.5e) 47.7 (65g, 43h)
PbCR 0.049 (0.050a) 1.292 (1.027d) 5.31 (3.5e) 99.8 (82.0i)
PbLOE 0.053 1.190 2.92 59.71
Pt 0.180 (0.230a) 1.472 (1.158d) 7.06 (7.0f) 62.73 (71.5f)
Pd 0.138 (0.173a) 1.410 (1.133d) 7.10 64.50
Ni 0.209 (0.177a) 1.421 (1.224d) 8.88 (4.53) 57.73 (41.8f)

a From [34]. b From [46]. c From [47]. d From [48]. e From [1]. f From [49]. g From [44].
h From [45]. i From [50].

experimental values. In the cases of Rh and Ir, the overestimation is substantial (441 K in the
case of Rh, and 573 K in the case of Ir) and is probably due to either poorer fitting of the model
in these particular cases, or to larger uncertainty in the experimental values used in the fitting
of the potential. In the case of Ni, there is also an overestimation of the experimental melting
temperature, but much smaller (68 K) than in the cases of Rh and Ir. In fact, the smallest
discrepancy is found in the case of Ni. Also, for Al the discrepancy is rather small, with our
predicted melting temperature within 70 K of the experimental value (an error of −7%), but
more typical discrepancies are around 20%, with a general tendency to underestimate, except
in the noted cases of Ni, Rh and Ir. There could be several reasons for the discrepancies seen
in the cases of Ni and Rh; possibly the quality of the experimental data to which the CR model
was fitted in these cases was lower, or the fitting procedure was less accurate.

Once the melting temperature of each metal was determined as explained above, we
conducted further simulations at the predicted melting temperature in NV T conditions. These
simulations had the purpose of analysing the validity of the Lindemann [38] melting criterion
in the case of the solid phase, while those conducted in the liquid phase allowed us to determine
the transport coefficients, and we discuss those results below (see section 3.2).

There has been a long effort in the scientific community directed at understanding how
melting actually occurs [39]. In particular, there have been several attempts to correlate the
occurrence of melting with some thermally dependent feature of the solid. One such attempt
is the well-known Lindemann [38] melting criterion, which establishes that a solid melts when
the amplitude of the thermal motion of the atoms around their equilibrium positions reaches
a critical fraction of the nearest-neighbour distance. Another well-known melting criterion
is that due to Born [40], according to which melting occurs once the crystal loses its rigidity,
i.e. when its shear modulus vanishes. Recently, these two melting criteria have been shown to be
equivalent at the limit of superheating [41] (mechanical melting). At equilibrium melting, the
liquid nucleates at surfaces and defects, propagating to the rest of the crystal. In these melting
nuclei, the thermal oscillations of atoms have higher amplitude (typically around 20% of δ,
the nearest-neighbour distance) than bulk crystal atoms (which have amplitudes of the order of
10% of δ). When mechanical melting occurs, i.e. when the shear modulus of the crystal goes
to zero, all atoms are found to oscillate with amplitudes corresponding to the values observed
in melting nuclei in equilibrium melting [41].

At the melting temperature calculated for each metal, we have measured the average
displacement amplitudes, which range from 11.5% to 13.6% of the nearest-neighbour distance.
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While there is some scatter in the results, they seem to indicate that indeed, for the fcc metals
considered here, there is a critical value of the atomic displacements beyond which melting
occurs. Martin and O’Connor [42] have measured experimentally the vibrational amplitudes of
a series of materials close to their melting points, and concluded that the Lindemann criterion is
applicable in materials of a similar kind. They found that, in the case of fcc metals Al and Cu,
the amplitude of the thermal vibrations reached 8% of the nearest-neighbour distance close to
the melting temperature. In the case of alkali halides, the value was closer to 11%. The values
we obtain for the fcc metals are somewhat larger than those reported by Martin and O’Connor,
which could be due to the fact that their measurements were taken at temperatures close to, but
below, the melting temperature, but are more likely to be a consequence of the model.

The melting of fcc metals has previously been studied by several authors with the same or
similar models to those used here. Cleri and Rosato [13] considered, in particular, the cases
of Ni, Ag and Cu, while Gómez et al [18] modelled the melting of all metals considered in
this study, but with a slightly modified version of the CR potential. Let us first comment
on the comparison of our calculated melting temperatures with those obtained by Cleri and
Rosato (who only considered the cases of Ni, Ag and Cu) using the same model. Cleri and
Rosato used what we have referred to in section 2.2 as the direct method, namely, simulating
the solid in NPT conditions at different temperatures until the system was observed to melt.
As has already been commented, this procedure invariably results in an overestimation of the
theoretical melting temperature. Their results for these systems are of the order of 300 K higher
than ours for Rh and Cu (84 K in the case of Ni) and, since their simulations were also carried
out for systems of 500 atoms, this discrepancy cannot be attributed to different size effects. We
therefore conclude that the difference between their estimated melting temperatures and ours
is a manifestation of the hysteresis effects in the results of Cleri and Rosato. Furthermore,
their results are invariably higher than the experimental values (typically by 100–200 K),
while the ones that we obtain, both for the same metals and for those for which Cleri and
Rosato did not estimate the melting temperature, are generally below the experimental values
(with the noted exceptions of Rh and Ir). Gómez et al [18] also used the direct method to
estimate the melting temperatures of fcc metals, so it is also likely that their results provide
overestimations of the true melting temperatures as predicted by their model. Unfortunately,
they used a somewhat simplified version of the CR potential, and therefore their results are not
directly comparable to those of Cleri and Rosato, nor to those obtained in this study. Indeed,
it is striking that, in the cases of Ni, Ag, and Cu (the three cases for which Cleri and Rosato
estimated the melting temperature), the results of Gómez et al are, on average, nearly 400 K
below those obtained by Cleri and Rosato. Furthermore, with the only exception of Pb, Gómez
et al predict melting temperatures that are several hundreds of K below the experimentally
measured melting temperatures. Therefore it can be expected that the true melting points of
the CR model, as modified by Gómez et al, fall significantly below the experimental melting
temperatures.

The melting of Al has been calculated from first-principles simulations in different
ways [36, 43, 37, 23]. In the work of de Wijs et al [36] the melting of Al at zero pressure
was calculated by obtaining the free energy of the fcc and liquid phases directly from density
functional theory (DFT) simulations. They reported a melting temperature of Tm = 890±20 K,
which is in very good agreement with the experimental value, and also very close to the result
that we obtain with the CR potential. According to the results of de Wijs et al, the value of
dTm/dP is very close to the experimental result of Cannon [44], which is 65 K GPa−1. The CR
potential, on the other hand, gives a result of 49.2 K GPa−1 (see table 2), which is further away
from the value reported by Cannon, but closer to the value recently obtained by Hänström and
Lazor [45] (43 K GPa−1). We can therefore conclude that both first-principles methods and
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the CR potential predict values of the slope of the melting line which are within experimental
uncertainty bounds. Jesson and Madden [43] also estimated the melting temperature of Al
following the same procedure as de Wijs et al [36]. However, they employed an orbital-free
functional instead of using the Kohn–Sham ansatz of DFT. They obtained a rather low melting
temperature, 615 K, more than 300 K below the experimental value. More recently, Vočadlo
and Alfé [37] have calculated not only the zero-pressure melting point, but even the melting
curve up to pressures of 150 GPa. These authors used a generalized-gradient functional form
for the exchange and correlation energy in DFT, and obtain a melting temperature of 786±50 K,
which they corrected to a new value of 912±50 K when taking into account the overestimation
of the equilibrium lattice parameter of Al committed by the exchange–correlation functional
employed in their calculations.

Vočadlo et al [35] have calculated the melting line of Cu up to 100 GPa from two-phase
simulations employing an empirical potential fitted to first-principles simulations. At zero
pressure, they obtain a melting temperature of 1176 ± 100 K, which is in good agreement
with our result. For the pressure derivative at zero pressure, they give a value of 38 K GPa−1,
which is again in good agreement with the value that we obtain (see table 2) and also with
experimental results.

In order to double-check our estimations of the melting temperature by means of free-
energy calculations, we have also sought to determine it by an alternative method, namely the
two-phase approach, described in section 2.2. We have chosen the case of Pb, as modelled
with the CR potential for this check. The system was prepared as follows: a simulation box
containing 500 atoms of the fcc solid phase was equilibrated at temperatures between 400 and
500 K at regular intervals of 20 K, employing NPT MD simulations with P = 0 GPa. These
simulations provided the average lattice parameter at each temperature. The liquid phase was
then prepared in a box also containing 500 atoms, having two sides of equal length to that of
the fcc phase at the same temperature, while the third length was free to adapt to the external
pressure. We then proceeded to join the two phases together in a single simulation box, with
the interface parallel to a [100] plane in the fcc solid. After putting the two phases together, a
short simulation was carried out with the atoms in the solid phase frozen, in order to allow the
liquid to adapt to the presence of the solid. With the system thus prepared, we conducted long
(200 ps) in NPT conditions, where the three sides of the simulation cell were allowed to evolve
independently, but the angles α, β and γ were constrained at 90◦. During these simulations, the
system was observed to evolve until only one phase (solid or liquid) prevailed (see figure 2).
At all temperatures up to 480 K, the system was observed to freeze into the solid phase, while
it eventually melted at 500 K. We then performed a final simulation at 490 K, where again the
system was observed to melt (see figure 2(b)). Thus, our two-phase simulations indicate that the
melting of fcc Pb according to the CR potential is to be found between 480 and 490 K. This is in
good agreement with our previous result based on free-energy calculations (466±6 K), though
in principle outside of the upper bound of the error bar of the free-energy calculation. In order
to clarify the reasons for this slight discrepancy, we have re-calculated the melting temperature
of Pb using the free-energy approach employing different system sizes. In particular, we have
considered systems containing 64, 108, 256 and 864 atoms, as well as our standard system
size of 500 atoms. The values obtained are 480 ± 28 K (64 atoms), 476 ± 14 K (108 atoms),
478±13 K (256 atoms), and 479±14 K (864 atoms). These values agree with each other within
the error bars, and are also in excellent agreement with the value deduced from the two-phase
simulations. It seems that the value originally calculated with 500 atoms is slightly (10–15 K)
below the trend; this is most likely due to the fact that the range of temperatures [Ts, Tl] used
to bracket the melting temperature Tf in this case was wider, since initially the actual value
was unknown. In any case, we take the view that the two results are sufficiently close to one
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Figure 2. Two-phase simulations of Pb with the CR potential. The plots show the number density
of the system along a line perpendicular to the interface as a function of time. The density spikes to
the left of the curve at the start of the simulations correspond to planes of atoms in the crystal, while
the homogeneous density on the right corresponds to the liquid phase. The left panel (a) shows the
density evolution at 440 K, where, as time progresses, the solid phase eventually occupies the whole
simulation cell. On the right side (b), at 490 K, it is the liquid phase that ends up filling the system.

another, and to the value obtained with the two-phase simulations, that we can consider them
to be in good agreement.

Regarding enthalpies of fusion (see table 2), again we note a slight tendency to
underestimate the experimental value, except in the cases of Ni, Rh and Ir, where there is
an overestimation, consistent with the fact that these are the three elements for which the
CR potential overestimates the melting temperature. We therefore conclude that the CR
parametrization tends to stabilize the liquid with respect to the solid phase, which results in
low melting temperatures. The entropies of fusion are generally small, typically 1.1–1.2 kB,
and our calculated values are in good agreement with the experimental values, with a slight
tendency to overestimate.

Another important quantity is the pressure derivative of the melting line at zero pressure.
The ability of a model to correctly reproduce this value provides an indication of how well
the model is likely to describe the melting line. We notice that the CR potential gives a value
of dTm/dP which is, in general, within 30% of the experimental value, when the latter is
known. We have chosen the cases of Cu and Al, for which the discrepancy between calculated
and experimental values of dTm/dP is among the smallest, to calculate the melting line by
integration of the Clausius–Clapeyron equation, following the method of de Koning et al [28].
Our calculated melting lines are shown in figure 3. In order to check the correctness of the
calculated melting line at finite pressures, we independently evaluated the melting temperature
at pressures of 5 and 20 GPa (results indicated by filled circles in figure 3) and, as can
be seen, the melting line and these calculated finite pressure melting points are in mutual
agreement. For the case of Al, although our calculated melting temperature at zero pressure is
in good agreement with the experimental results of Hänström and Lazor [45] and Boehler and
Ross [51], as well as with the calculated values of de Wijs et al [36] and Vočadlo and Alfè [37],
it is clear that the value of the pressure derivative of the melting temperature predicted by the
CR model (49.2 K GPa−1; see table 2) is too small, as our calculated melting line deviates
from the experimental and ab initio data as the pressure is increased. Because of this, we have
not attempted to obtain the melting line beyond pressures of 20 GPa. In the case of Cu, the
agreement of the melting temperature at zero pressure is a bit poorer than in the case of Al,
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Figure 3. Melting line of (a) Al and (b) Cu, calculated using the dynamical Clausius–Clapeyron
integration method of de Koning et al [28]. We compare our results with the work of Hänström and
Lazor [45], that of Boehler and Ross [51], and that of Vočadlo and Alfè [37] in the case of Al, and
that of Mirwald and Kennedy [46], Moriarty [52], Vočadlo et al [35], and Belonoshko et al [5] in
the case of Cu.

with an underestimation of about 120 K, but on the other hand the predicted value of dTf/dP
is closer to the experimental value (see table 2), and therefore agreement with the experimental
and ab initio data is reasonable, even at pressures as high as 100 GPa.

3.2. Transport properties

Transport properties of liquid metals, such as the diffusion coefficient and viscosity, are both
of practical and fundamental interest. From a technological point of view, the processing
of liquid metals for alloying, glass formation and other engineering processes requires the
knowledge of transport properties. At a more fundamental level, universal scaling laws of
transport coefficients have been proposed [53–55], and there is evidence from simulation that
liquid metals adhere to these scaling laws particularly well [56, 57]. Transport properties of
liquid metals have been studied before with computer simulations on a number of occasions,
though not normally at the melting temperature, since usually the latter was not determined in
the same study. Hence we report here the diffusion coefficient and viscosity for each metal in
the liquid state at the melting temperature predicted by the model.

In order to determine the transport properties of each liquid metal at its corresponding
melting temperature, we have performed NVE MD simulations at the volume of the liquid
phase and at the calculated melting temperature. The diffusion coefficient, D, was obtained
from the slope of the mean-squared displacements in the standard way. The viscosity, µ, was
estimated from the Stokes–Einstein relation, Dµ = kBT/2πa, where a is an effective atomic
diameter. Strictly speaking, this relation is only valid for Brownian motion, but it has been
shown [58] to work reasonably well for atoms if a is chosen to be equal to the position of the
first peak in the radial distribution function. In the case of the metals considered here, this
procedure has been shown to lead to results essentially indistinguishable from those provided
by the more appropriate Green–Kubo relation [59].

The diffusion coefficient, D, and viscosity, µ, of the liquid metals considered in this study
have been previously obtained by Alemany and coworkers [59] using the CR potential, at
temperatures slightly above the experimentally measured ones for each case. Consequently,
their values of D and µ correspond to higher temperatures than our own, and hence it is
not surprising that their calculated diffusion coefficients are somewhat larger than those we
obtain. Since we estimate the viscosity from the Stokes–Einstein relation, our values are a little
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Table 3. Diffusion coefficient and viscosity (obtained from the Stokes–Einstein relation) for the
molten metals considered in this study. The experimental data for the diffusion coefficient were
calculated at the experimental melting temperature employing the fitting expressions given in [1].

D × 105 (cm2 s−1) η (m Pa s)

This work Ref. [59] Exp. [1] This work Ref. [59] Exp. [1]

Ag 1.90 2.65 2.54 4.24 3.70 3.88
Rh 3.96 — — 5.02 — —
Cu 2.72 2.72 3.97 4.03 4.33 4.00
Ir 2.58 — — 10.58 — —
Au 1.54 2.60 — 4.76 3.93 5.00
Al 4.00 4.68 — 1.76 1.60 1.30
PbCR 1.02 1.33 0.17 2.97 3.20 2.65
PbLOE 1.20 — — 3.17 3.20 2.65
Pt 1.97 2.81 — 6.60 6.17 —
Pd 2.42 4.03 — 4.30 3.68 —
Ni 3.70 2.52 — 4.40 5.85 4.90

higher than those obtained by Alemany et al. Nevertheless, their results and ours are mutually
consistent, bearing in mind this temperature difference, which in some cases can be as large as
several hundred degrees. Our calculated values of D and µ are compared with the theoretical
values of Alemany et al [59] and with experimental values in table 3. Comparing with the
experimental values of the diffusion coefficient, which seems to be known only for Ag, Cu
and Pb, agreement is reasonable for Ag and Cu, but the experimental value for Pb seems to be
rather low, more so if we take into account the good agreement between the calculated value of
Alemany et al [59] and our own. In fact, the experimental value for D seems to be inconsistent
with the experimental value of µ, if one asumes the validity of the Stokes–Einstein relation;
hence we conclude that the experimental D value is a significant underestimation.

In 1996 Dzugutov [55] proposed a universal relation linking the diffusion coefficient and
the excess entropy, i.e. S − Sid, where Sid is the entropy of the ideal gas at the same density
and temperature. Dzugutov found, via molecular dynamics simulations, that the diffusion
coefficients calculated in many different systems followed very closely a relation having the
form D∗ = 0.049e(S−Sid), where D∗ is a scaled dimensionless form of the diffusion coefficient,
D∗ = D
−1σ−2. Here σ is the position of the first maximum in the radial distribution function,
and 
 is the collision frequency of an atom with the sphere of its first neighbours. According
to Enskog’s theory, this is given by 
 = 4σ 2g(σ )ρ

√
πkBT/m, where g(σ ) is the peak value

of the radial distribution function, ρ is the number density, kB is Boltzmann’s constant, and m
is the mass of the atoms. In fact, Dzugutov used the so-called two-particle approximation to
the excess entropy,

S − Sid ≈ S2 = −2πρ

∫ ∞

0

{
g(r) ln

[
g(r)

] − [
g(r) − 1

]}
r 2 dr. (5)

Later Hoyt et al [56] and more recently Li et al [57] have corroborated and extended the
observations of Dzugutov [55]. Since we have calculated the diffusion coefficients in the
liquid phase at melting, and we have also obtained the entropy at that temperature, we can
automatically check how consistent are our results with Dzugutov’s universal relation. In
figure 4 we plot our calculated diffusion coefficients, where they are compared with Dzugutov’s
prediction. Although obviously there is some scatter in the data, it is clear there that our
calculated values of the diffusion coefficient are consistent with the universal behaviour found
by Dzugutov.
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4. Conclusions

We have reported results from an extensive study of the melting and thermodynamic properties
of a series of fcc metals modelled with the potentials proposed by Cleri and Rosato [13]; in
the case of Pb, we have compared this potential with the ‘glue’ model of Lim et al [14]. We
have found that both models tend to underestimate the melting temperature of fcc metals by
as much as 30%, which implies a difference of almost 600 K in the case of Pd with respect to
the experimental value, or 400 K in the case of Au. The trend to underestimate is broken in
the cases of Ir and Rh, for which there is an overestimation of 20%. While these discrepancies
may seem large, it should be pointed out that the form of the potential is very simple, and that,
in its construction and fitting, no information on the thermal properties of the metals, nor on
their liquid phase, are included. Taking this observation into account, it is remarkable that at
least melting trends among the different metals seem to be correctly reproduced. Other melting
properties, such as fusion enthalpies and entropies, fractional volume changes and the pressure
derivative of the melting line at zero pressure (dTf/dP), are reproduced with varying degrees
of success, but generally within ±30% of the experimental value. For the particular cases of Al
and Cu, where the calculated dTf/dP value is in reasonable agreement with the experimental
values, we have also calculated the melting line predicted by the model up to 20 GPa.

Concerning transport properties such as the diffusivity and the viscosity of the molten
metals, we have found values which are consistent with both the available experimental data
and results from previous theoretical work [59]. Our calculated diffusion constants at melting
for the liquid phase are consistent with Dzugutov’s universal relation.
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